Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Dis ; 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37849283

RESUMO

British Columbia (BC) is the lead producer of sweet cherries in Canada with more than 2,000 ha in production and a farm gate value of over CAD$100 million annually. Since 2010, an outbreak of little cherry disease caused by Little cherry virus 1 (LChV1) and Little cherry virus 2 (LChV2), as well as X-disease (XD) caused by 'Candidatus Phytoplasma pruni' has caused significant economic losses in neighboring Washington State (WA), USA. LChV1 and LChV2 have long been known to occur in BC (Theilmann et al. 2002); however, 'Ca. P. pruni' has not yet been reported in BC. Due to its geographical proximity to WA State, the BC cherry industry expressed significant concerns about the possible presence of the phytoplasma in cherry orchards. Accordingly, the main objective of this study was to survey cherry orchards to determine whether 'Ca. P. pruni' was present in symptomatic trees in BC. A total of 118 samples of leaves and fruit stems from individual symptomatic trees were collected prior to harvest from nine cherry orchards and one nectarine orchard in the Okanagan and Similkameen Valleys in BC. Characteristic symptoms included small and misshapen fruit with poor color development. Samples were submitted to AGNEMA, LLC (Pasco, WA) for testing using qPCR TaqMan assays for LChV1 (Katsiani et al. 2018), LChV2 (Shires et al. 2022) and 'Ca. P. pruni' (Kogej et al. 2020). Test results showed 21 samples (17.8%) from three cherry orchards positive for LChV2 and 2 samples (1.7%) from one cherry orchard positive for 'Ca. P. pruni'. In order to confirm the identification of 'Ca. P. pruni', part of the 16S ribosomal RNA gene was amplified by nested PCR using the P1/P7 followed by R16F2n/R2 primer sets (Gundersen and Lee 1996) and Sanger sequenced. BC-XD-Pa-1 (GenBank Acc. No. OR539920) and BC-XD-Pa-2 (OR537699) were identical to one another and showed 99.92% identity to the 'Ca. P. pruni' reference strain CX-95 (JQ044397). Analysis using iPhyClassifier (Zhou et al. 2009) indicated that they were 16SrIII-A strains. Interestingly, the two partial 16S sequences showed 100% nucleotide identity to strain 10324 (MH810016) and others from WA. For additional confirmation, partial secA (Hodgetts et al. 2008) and secY (Lee et al. 2010) translocases were amplified and sequenced. As with the 16S sequences, secY sequences (OR542980, OR542981) showed 99.92% nucleotide identity to strain CX-95 (JQ268249), and 100% to strain 10324 (MH810035). The secA sequences (OR542978, OR542979) had nucleotide identities of 99.77% to strain CX (MW547067), and 100% to the Green Valley strain from California (EU168733). Accordingly, 'Ca. P. Pruni' was confirmed to be present in sweet cherry samples from BC. 'Ca. P. Pruni'-related strains have been previously reported to occur in Canada in commercial poinsettias (Euphorbia pulcherrima) (Arocha-Rosete et al. 2021). To our knowledge, this is the first report of 'Ca. P. Pruni' in sweet cherry in Canada. Due to the important economic value of sweet cherries in BC, these findings are highly significant and represent the first steps towards the development of a surveillance system for early detection of XD, and consequent implementation of management strategies, including vector control. As required by federal and provincial regulations, cherry trees infected with LChV2 and 'Ca. P. Pruni' found in the survey were removed by the growers.

2.
Virology ; 587: 109874, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37690385

RESUMO

D'Ann Rochon passed away on November 29th 2022. She is remembered for her outstanding contributions to the field of plant virology, her strong commitment to high quality science and her dedication to the training and mentorship of the next generation of scientists. She was a research scientist for Agriculture and Agri-Food Canada and an Adjunct Professor for the University of British Columbia. Her research program provided new insights on the infection cycle of tombusviruses and related viruses, including ground-breaking research on the structure of virus particles, the mechanisms of virus transmission by fungal zoospores, and the complexity of plant-virus interactions. She also developed diagnostic antibodies for plum pox virus and little cherry virus 2 that have had a significant impact on the management of these viruses.

3.
Nat Commun ; 14(1): 85, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36604425

RESUMO

Pathogens rely on expression of host susceptibility (S) genes to promote infection and disease. As DNA methylation is an epigenetic modification that affects gene expression, blocking access to S genes through targeted methylation could increase disease resistance. Xanthomonas phaseoli pv. manihotis, the causal agent of cassava bacterial blight (CBB), uses transcription activator-like20 (TAL20) to induce expression of the S gene MeSWEET10a. In this work, we direct methylation to the TAL20 effector binding element within the MeSWEET10a promoter using a synthetic zinc-finger DNA binding domain fused to a component of the RNA-directed DNA methylation pathway. We demonstrate that this methylation prevents TAL20 binding, blocks transcriptional activation of MeSWEET10a in vivo and that these plants display decreased CBB symptoms while maintaining normal growth and development. This work therefore presents an epigenome editing approach useful for crop improvement.


Assuntos
Manihot , Xanthomonas , Manihot/genética , Epigenoma , Xanthomonas/genética , Resistência à Doença/genética , Fatores de Transcrição/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia
4.
Plant Physiol ; 188(4): 1811-1824, 2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-35134247

RESUMO

Tools for sequence-specific DNA binding have opened the door to new approaches in investigating fundamental questions in biology and crop development. While there are several platforms to choose from, many of the recent advances in sequence-specific targeting tools are focused on developing Clustered Regularly Interspaced Short Palindromic Repeats- CRISPR Associated (CRISPR-Cas)-based systems. Using a catalytically inactive Cas protein (dCas), this system can act as a vector for different modular catalytic domains (effector domains) to control a gene's expression or alter epigenetic marks such as DNA methylation. Recent trends in developing CRISPR-dCas systems include creating versions that can target multiple copies of effector domains to a single site, targeting epigenetic changes that, in some cases, can be inherited to the next generation in the absence of the targeting construct, and combining effector domains and targeting strategies to create synergies that increase the functionality or efficiency of the system. This review summarizes and compares DNA targeting technologies, the effector domains used to target transcriptional control and epi-mutagenesis, and the different CRISPR-dCas systems used in plants.


Assuntos
Sistemas CRISPR-Cas , Sistemas CRISPR-Cas/genética , Mutagênese
5.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34074795

RESUMO

CRISPR-based targeted modification of epigenetic marks such as DNA cytosine methylation is an important strategy to regulate the expression of genes and their associated phenotypes. Although plants have DNA methylation in all sequence contexts (CG, CHG, CHH, where H = A, T, C), methylation in the symmetric CG context is particularly important for gene silencing and is very efficiently maintained through mitotic and meiotic cell divisions. Tools that can directly add CG methylation to specific loci are therefore highly desirable but are currently lacking in plants. Here we have developed two CRISPR-based CG-specific targeted DNA methylation systems for plants using a variant of the bacterial CG-specific DNA methyltransferase MQ1 with reduced activity but high specificity. We demonstrate that the methylation added by MQ1 is highly target specific and can be heritably maintained in the absence of the effector. These tools should be valuable both in crop engineering and in plant genetic research.


Assuntos
Arabidopsis , Proteínas de Bactérias , Sistemas CRISPR-Cas , Metilação de DNA , DNA de Plantas/metabolismo , DNA-Citosina Metilases , Plantas Geneticamente Modificadas , Tenericutes/genética , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , DNA de Plantas/genética , DNA-Citosina Metilases/genética , DNA-Citosina Metilases/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Tenericutes/enzimologia
6.
Virology ; 554: 106-119, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33418272

RESUMO

Cucumber necrosis virus (CNV) is a (+)ssRNA virus that elicits spreading local and systemic necrosis in Nicotiana benthamiana. We previously showed that the CNV coat protein (CP) arm functions as a chloroplast transit peptide that targets a CP fragment containing the S and P domains to chloroplasts during infection. Here we show that several CP arm mutants that inefficiently target chloroplasts, along with a mutant that lacks the S and P domains, show an early onset of more localized necrosis along with protracted induction of pathogenesis related protein (PR1a). Agroinfiltrated CNV CP is shown to interfere with CNV p33 and Tomato bushy stunt virus p19 induced necrosis. Additionally, we provide evidence that a CP mutant that does not detectably enter the chloroplast stroma induces relatively higher levels of several plant defense-related genes compared to WT CNV. Together, our data suggest that targeting of CNV CP to the chloroplast stroma interferes with chloroplast-mediated plant defense.


Assuntos
Proteínas do Capsídeo/metabolismo , Cloroplastos/metabolismo , Necrose e Clorose das Plantas/virologia , Tombusvirus/fisiologia , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Genes de Plantas , Proteínas Mutantes/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Imunidade Vegetal/genética , Necrose e Clorose das Plantas/imunologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Domínios Proteicos , Transdução de Sinais , /imunologia , Tombusvirus/genética , Regulação para Cima , Proteínas Virais/metabolismo
7.
PLoS Genet ; 16(12): e1008983, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33315895

RESUMO

Plant RNA viruses are used as delivery vectors for their high level of accumulation and efficient spread during virus multiplication and movement. Utilizing this concept, several viral-based guide RNA delivery platforms for CRISPR-Cas9 genome editing have been developed. The CRISPR-Cas9 system has also been adapted for epigenome editing. While systems have been developed for CRISPR-Cas9 based gene activation or site-specific DNA demethylation, viral delivery of guide RNAs remains to be developed for these purposes. To address this gap we have developed a tobacco rattle virus (TRV)-based single guide RNA delivery system for epigenome editing in Arabidopsis thaliana. Because tRNA-like sequences have been shown to facilitate the cell-to-cell movement of RNAs in plants, we used the tRNA-guide RNA expression system to express guide RNAs from the viral genome to promote heritable epigenome editing. We demonstrate that the tRNA-gRNA system with TRV can be used for both transcriptional activation and targeted DNA demethylation of the FLOWERING WAGENINGEN gene in Arabidopsis. We achieved up to ~8% heritability of the induced demethylation phenotype in the progeny of virus inoculated plants. We did not detect the virus in the next generation, indicating effective clearance of the virus from plant tissues. Thus, TRV delivery, combined with a specific tRNA-gRNA architecture, provides for fast and effective epigenome editing.


Assuntos
Proteínas de Arabidopsis/genética , Sistemas CRISPR-Cas , Metilação de DNA , Edição de Genes/métodos , Marcação de Genes/métodos , Vírus de Plantas/genética , RNA Guia de Cinetoplastídeos/genética , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Epigenoma , RNA de Transferência/genética , Ativação Transcricional
8.
Cell ; 176(5): 1068-1082.e19, 2019 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-30739798

RESUMO

The RNA-directed DNA methylation (RdDM) pathway in plants controls gene expression via cytosine DNA methylation. The ability to manipulate RdDM would shed light on the mechanisms and applications of DNA methylation to control gene expression. Here, we identified diverse RdDM proteins that are capable of targeting methylation and silencing in Arabidopsis when tethered to an artificial zinc finger (ZF-RdDM). We studied their order of action within the RdDM pathway by testing their ability to target methylation in different mutants. We also evaluated ectopic siRNA biogenesis, RNA polymerase V (Pol V) recruitment, targeted DNA methylation, and gene-expression changes at thousands of ZF-RdDM targets. We found that co-targeting both arms of the RdDM pathway, siRNA biogenesis and Pol V recruitment, dramatically enhanced targeted methylation. This work defines how RdDM components establish DNA methylation and enables new strategies for epigenetic gene regulation via targeted DNA methylation.


Assuntos
Proteínas de Arabidopsis/metabolismo , Metilação de DNA/fisiologia , RNA Polimerases Dirigidas por DNA/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Citosina/metabolismo , DNA/metabolismo , Metilação de DNA/genética , RNA Polimerases Dirigidas por DNA/genética , Regulação da Expressão Gênica de Plantas/genética , RNA Polimerase II/metabolismo , RNA de Plantas/genética , RNA Interferente Pequeno/metabolismo
9.
Virology ; 524: 127-139, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30195250

RESUMO

ARGONAUTEs (notably AGO1 and AGO2) are effectors of plant antiviral RNA silencing. AGO1 was shown to be required for the temperature-dependent symptom recovery of Nicotiana benthamiana plants infected with tomato ringspot virus (isolate ToRSV-Rasp1) at 27 °C. In this study, we show that symptom recovery from isolate ToRSV-GYV shares similar hallmarks of antiviral RNA silencing but occurs at a wider range of temperatures (21-27 °C). At 21 °C, an early spike in AGO2 mRNAs accumulation was observed in plants infected with either ToRSV-Rasp1 or ToRSV-GYV but the AGO2 protein was only consistently detected in ToRSV-GYV infected plants. Symptom recovery from ToRSV-GYV at 21 °C was not prevented in an ago2 mutant or by silencing of AGO1 or AGO2. We conclude that other factors (possibly other AGOs) contribute to symptom recovery under these conditions. The results also highlight distinct expression patterns of AGO2 in response to ToRSV isolates and environmental conditions.


Assuntos
Antivirais/metabolismo , Proteínas Argonautas/metabolismo , Interações Hospedeiro-Patógeno , Nepovirus/patogenicidade , Doenças das Plantas/virologia , Proteínas Argonautas/genética , Resistência à Doença , Nepovirus/genética , Doenças das Plantas/imunologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Interferência de RNA , Virulência
10.
Proc Natl Acad Sci U S A ; 115(9): E2125-E2134, 2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29444862

RESUMO

DNA methylation is an important epigenetic modification involved in gene regulation and transposable element silencing. Changes in DNA methylation can be heritable and, thus, can lead to the formation of stable epialleles. A well-characterized example of a stable epiallele in plants is fwa, which consists of the loss of DNA cytosine methylation (5mC) in the promoter of the FLOWERING WAGENINGEN (FWA) gene, causing up-regulation of FWA and a heritable late-flowering phenotype. Here we demonstrate that a fusion between the catalytic domain of the human demethylase TEN-ELEVEN TRANSLOCATION1 (TET1cd) and an artificial zinc finger (ZF) designed to target the FWA promoter can cause highly efficient targeted demethylation, FWA up-regulation, and a heritable late-flowering phenotype. Additional ZF-TET1cd fusions designed to target methylated regions of the CACTA1 transposon also caused targeted demethylation and changes in expression. Finally, we have developed a CRISPR/dCas9-based targeted demethylation system using the TET1cd and a modified SunTag system. Similar to the ZF-TET1cd fusions, the SunTag-TET1cd system is able to target demethylation and activate gene expression when directed to the FWA or CACTA1 loci. Our study provides tools for targeted removal of 5mC at specific loci in the genome with high specificity and minimal off-target effects. These tools provide the opportunity to develop new epialleles for traits of interest, and to reactivate expression of previously silenced genes, transgenes, or transposons.


Assuntos
Arabidopsis/genética , Metilação de DNA , Genoma de Planta , Oxigenases de Função Mista/química , Proteínas Proto-Oncogênicas/química , Proteínas de Arabidopsis/metabolismo , Domínio Catalítico , Elementos de DNA Transponíveis , DNA de Plantas/química , Epigênese Genética , Flores , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Proteínas de Homeodomínio/metabolismo , Humanos , Mutação , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismo , Dedos de Zinco
11.
Virology ; 479-480: 167-79, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25677651

RESUMO

The natural outcome of some plant-virus interactions is symptom recovery, which is characterized by the emergence of asymptomatic leaves following a systemic symptomatic infection. Symptom recovery is generally accompanied with reduced virus titers and sequence-specific resistance to secondary infection and has been linked with the induction of antiviral RNA silencing. Recent studies have revealed an unsuspected diversity of silencing mechanisms associated with symptom recovery in various host-virus interactions, including degradation or translation repression of viral RNAs and in the case of DNA viruses, transcriptional arrest of viral minichromosomes. RNA silencing may also contribute to symptom alleviation by regulating plant gene expression. In this review, we discuss the evidence supporting the role of various RNA silencing mechanisms in symptom recovery. We also discuss how a delicate equilibrium between RNA silencing and virus counter-defense responses in recovered leaves may help maintain virus titers at levels below the threshold required for symptom induction.


Assuntos
Interações Hospedeiro-Patógeno , Doenças das Plantas/imunologia , Doenças das Plantas/virologia , Vírus de Plantas/imunologia , Interferência de RNA , Folhas de Planta/virologia , Carga Viral
12.
Arch Virol ; 160(2): 543-7, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25267178

RESUMO

The genome sequence of tomato ringspot virus (ToRSV, a subgroup C nepovirus) is currently available for one raspberry isolate. In this study, we describe the complete genome sequence of three additional isolates from raspberry (Rasp1-2014), grapevine (GYV-2014) and prunus (13C280). The degree of nucleotide sequence identity shared between RNA1 and RNA2 in the 5'-terminal 900 nucleotides and 3' untranslated region varied from 98-99 % (13C280, GYV-2014) to 80 % (Rasp1-2014). Phylogenetic studies revealed distinct origins for Rasp1-2014 RNA1 and RNA2, suggesting reassortment. Two recombination events were also identified in the 3' UTR and 5'-terminal region of RNA1.


Assuntos
Genoma Viral/genética , Nepovirus/genética , Prunus/virologia , Vírus Reordenados/genética , Recombinação Genética , Rubus/virologia , Vitis/virologia , Regiões 3' não Traduzidas/genética , Regiões 5' não Traduzidas/genética , Sequência de Aminoácidos , Sequência de Bases , Dados de Sequência Molecular , Nepovirus/classificação , Nepovirus/isolamento & purificação , Filogenia , Doenças das Plantas/virologia , RNA Viral/genética , Vírus Reordenados/classificação , Vírus Reordenados/isolamento & purificação , Alinhamento de Sequência , Análise de Sequência de RNA , Homologia de Sequência de Aminoácidos , Proteínas Virais/genética
13.
Virology ; 456-457: 188-97, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24889238

RESUMO

Symptom recovery in nepovirus-infected plants has been attributed to the induction of RNA silencing. However, recovery is not always accompanied with viral RNA clearance. In this study, we show that recovery of Nicotiana benthamiana plants infected with the tomato ringspot virus (ToRSV) is associated with a reduction of the steady-state levels of RNA2-encoded coat protein (CP) and movement protein but not of RNA2. In vivo labeling experiments revealed efficient synthesis of the CP early in infection, but reduced RNA2 translation later in infection. Silencing of Argonaute1-like (Ago1) genes prevented both symptom recovery and RNA2 translation repression. Similarly, growing the plants at lower temperature (21 °C rather than 27 °C) alleviated the recovery and the translation repression. Taken together, our results suggest that recovery of ToRSV-infected plants is associated with an Ago1-dependent mechanism that represses the translation of viral RNA2.


Assuntos
Proteínas Argonautas/metabolismo , Interações Hospedeiro-Patógeno , Nepovirus/fisiologia , Doenças das Plantas/virologia , Biossíntese de Proteínas , RNA Viral/genética , Doenças das Plantas/imunologia , Temperatura , /efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...